

L1CaloTrigger Algorithms

Sridhara Dasu

University of Wisconsin

Algorithms: Details, Updates and Simulation

- 2 x 10³³ cm⁻² s⁻¹ studies (CMS IN 2002/19)
- Highlights
- -Good jets and H_T
- What will be implemented in GCT/GT
- -Unexplored features invitation to participate
- -Define LUTs etc. in RCT, GCT
- -Define GT algorithms

15 April 2002 Sridhara Dasu

Overview

Calorimeter Geometry

Trigger Mapping

 18 crates handle all of the seamlessly CMS calorimeters

 Each crate processes a 0.7 φ x 5.0 η region.

 Each Receiver/Electron ID card pair typically covers a .35 φ x 0.7 η region

 Single Jet/Summary card handles full crate

Trigger Crate (18x) Calorimeter Regional

Receiver Cards (x7/crate)

(New) Jet/Summary Card processes HF data (3<η<5)

Electron/Photon Algorithm

Trigger Primitive Generator

Fine grain Flag Max of (_____,

Regional Calorimeter Trigger

S

- 12x12 trigger tower E₇ sums in 4x4 region steps with central region > others
- τ algorithm (isolated narrow energy deposits), within -2.5 < η < 2.5 Larger trigger towers in HF but ~ same jet region size, 1.5 η x 1.0 φ
- Redefine jet as τ jet if none of the nine 4x4 region τ -veto bits are on
- Top 4 τ-jets and top 4 jets in central rapidity, and top 4 jets in forward rapidity

15 April 2002 Sridhara Dasu 6

Tower Level Memory LUT

Fully programmable LUT, Current default values:

- Electron scale: 0.5 GeV LSB, Emax=63.5 GeV
- Veto: OR of fine-grain veto and H / E < 5%
- Jet energy (12x12 tower sum), E^{max}=1 TeV
- Activity level for □ pattern: E > 2 GeV, H > 4 GeV

5 April 200

Irigger Rates Vs Threshold

Rates drop sharply with trigger E_⊤ cutoff

- Provides ability to tune cuts to sustain rates during operation
- For electron several cuts are available to optimize efficiency versus rate
- For all trigger types there are tunable parameters, e.g., look-up-tables
- QCD background rates are within target (~12 kHz for calorimeter triggers).

ficienc\

urn-or

Cal Trigger Rates: 2 x 10³³ cm⁻² s⁻¹

10.8				Total Rate
10.8	0.03	37	25	ee(NI)
10.8	0.2	51	45	e(NI)
10.7	0.6	470	400	$ m H_{T}$
10.6	0.04	1200	600	Total E _T
10.6	0.7	80&150	60&90	$\mathbf{j} \cdot \mathbf{ME}_{\mathrm{T}}$
10.3	0.4	15&140	10&75	$e \cdot ME_T$
10.0	0.01	200	140	$Missing E_T$
10.0	0.8	15&~100	10&75	e- 🗌
9.8	0.4	15&125	10&100	e·j
9.6	0.2	62	55	jjjj
9.6	0.3	77	75	jjj
9.5	0.8	131	115	jj
9.5	1.5	152	130	j
8.8	0.7	~100	75	
8.6	3.8	~114	89	
5.0	0.2	19	15	ee
4.9	4.9	27	20	е
Rate (kHz)	Rate (kHz)	(GeV)	(GeV)	
Cumulative	Individual	95% Eff.	Threshold	Trigger

Selected Scenario: 5 kHz e/g, 5 kHz []jets, 1 kHz combined, rest []

	Channel	Total Efficiency		Trigger Eff (indi	r Efficiencies by trigger type (individual) cumulative	igger type	
	W∏ e∏	70	е				
Scenario:			(70) 70				
DCCIIai IC.	t□ eX	91	е	e. 🗌		JJJ	e.j
5 LH2 e/□			(82) 82	(62) 86	(55) 89	(24) 90	(54)91
	Z∏ ee	94	е	ee			
€ 1-II- □:			(93) 93	(76)94			
o kHz ∐jets,	H(115)□ □	99	е	ee			
4			(99) 99	(82)99			
1 kHz comb,	WW □ (051)H	87	е	e·[]		e-j	j
			(78) 78	(43) 81	(34) 83	(39) 85	(28) 87
rest [H(135)∏	84	е	e·	e:j		j
1			(70) 70	(46) 79	(46) 82	(38) 84	(34) 84
	Charged higgs	98		j	$\mathrm{j}\text{-}\mathrm{mE}_{\mathrm{T}}$		
	(200 GeV)		(85) 85	(77) 96	(60) 98		
No generator	H(200)□ □ jj	81			j	jj	
			(75) 75	(50) 79	(24) 81	(9) 81	
level cuts other	H(500)□ □ jj	99			J.	J:	
than requiring			(94) 94	(64) 94	(94) 99	(73) 99	
til com phinate	t□ jets	53	H_{T})] i)]]
mgger objects			(39) 39	(26) 43	(26) 46	(21) 47	(35)53
within calo.	mSUGRA	99	<u>.</u>				
			(99) 99				
(H(120) ☐ bb	41	jjj	J.		J:	
tracker (e,∏)			(12) 12	(27) 30	(26) 41	(16)41	
acceptance [Invisible higgs	44	j ·m E_T	<u>.</u>			
acceptance	(120 GeV)		(39) 39	(22)41	(13)44		

15 April 2002

Good Jets

- L1CaloTrigger finds jets of three types
- Central, Forward and ∐jets
- We send GT 4 objects of each type
- These are mutually exclusive lists
- For pure jet triggers, we need to use objects from all three categories, i.e., combine and re-sort
- Although, this is easy to implement in software, we will use too many GT algorithm slots
- Use good jet (E_T>Threshold) counts
- Can count within programmable [] cuts
- Several counts available
- For example: 2 jets in central, 1 in +forward, 1 in -forward
- Need simulation studies to define what is useful

H_T Trigger

- calibrated much noise and is not easily 「otal scalar E_⊤ integrates too
- At L1 tower-by-tower E. calibration is not available
- available as $f(E_T, \square, \square)$ However, jet calibration is
- scalar E_T of all high E_T objects in particle discovery/study the event is more useful for heavy Therefore, H_T which is the sum of
- SUSY sparticles
- 000
- it (FPGAs + flexible backplane) GCT should be able to implement 10
- Use top 8 or 12 candidates in sorted good jet list
- Sum E_T of good jets with E_T >threshold (e.g., 10 GeV)

14

GCT/GT Algorithm Agreement

- H_T from GCT to GT on separate cable in same tormat as E_T
- Study jet counts with an eye towards increasing numbers and categories
- Works on good* jets (E_T cut)
- *Should include all 3 categories (C + F + 🗍
- Decide by June CMS Trigger Meeting
- Jets are calibrated with LUTs
- Keep $4 \times (C + F + \square) = 12$ Jet List to GT

Summary

- and programmability as described in this talk are built RCT preproduction prototypes implementing the algorithms
- The default values for LUTs coded in ORCA perform quite well for discovery physics
- Need to further optimize the use of L1 LUTs
- GCT will implement good jet counts with cuts on various and ∐ regions, and H_T trigger
- Need to explore the use of the jet counts for use in multijet physics events
- Will help save some GT algorithms
- Topological trigger cuts in GT
- Jim Brooke started exploring [] cut for WW fusion
- L1 group will be happy to help anyone interested in optimization of cuts to improve trigger performance